The Wiener index in iterated line graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wiener index in iterated line graphs

For a graph G, denote by L i (G) its i-iterated line graph and denote by W (G) its Wiener index. We prove that the function W (L i (G)) is convex in variable i. Moreover, this function is strictly convex if G is different from a path, a claw K 1,3 and a cycle. As an application we prove that W (L i (T)) = W (T) for every i ≥ 3 if T is a tree in which no leaf is adjacent to a vertex of degree 2,...

متن کامل

Wiener index of iterated line graphs of trees homeomorphic to

Let G be a graph. Denote by L(G) its i-iterated line graph and denote by W (G) its Wiener index. Dobrynin, Entringer and Gutman stated the following problem: Does there exist a non-trivial tree T and i ≥ 3 such that W (L(T )) = W (T )? In a series of five papers we solve this problem. In a previous paper we proved that W (L(T )) > W (T ) for every tree T that is not homeomorphic to a path, claw...

متن کامل

On a conjecture about Wiener index in iterated line graphs of trees

Let G be a graph. Denote by L(G) its i-iterated line graph and denote by W (G) its Wiener index. There is a conjecture which claims that there exists no nontrivial tree T and i ≥ 3, such that W (L(T )) = W (T ), see [5]. We prove this conjecture for trees which are not homeomorphic to the claw K1,3 and the graph of letter H.

متن کامل

On Wiener index of graphs and their line graphs

The Wiener index of a graph G, denoted by W (G), is the sum of distances between all pairs of vertices in G. In this paper, we consider the relation between the Wiener index of a graph, G, and its line graph, L(G). We show that if G is of minimum degree at least two, then W (G) ≤ W (L(G)). We prove that for every non-negative integer g0, there exists g > g0, such that there are infinitely many ...

متن کامل

Wiener Index of Graphs in Terms of Eccentricities

The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2012

ISSN: 0166-218X

DOI: 10.1016/j.dam.2012.04.021